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Abstract

An architecture 1s presented for combining rule-based and case-based reasoning. The architecture
1s intended {for domains that arc understood reazonably well, bur still imperfecthy. Jt uses a sot
of rules, which are taken to be only approximiately rorrect, to obtain a preliminary answer for a
given problem; it then draws analogies froin cases 1o handle exceptions to the rules. Having rules
together with cases not only increases the architecture's dornain coverage, it also allows innovative
ways of doing case-based reasoning: the same rules that are used for rule-based reasoning are also
used by the case-based component to do case indexing and case adapiation. The architecture was
applied to the task of name pronunciation, and, with minimal knowledge engineering, was found
to perform almost at the level of the best commercial systems. Morcover, its accuracy was found
to exceed what 1t could have achieved with rules or cases alone, thus demonstrating the accuracy
improvement afforded by combining rule-based and case-based reasoning.




1 Introduction

Domains vary in the degree 1o which they are understood, ranging from those that have be n codified
completely and correctly in terms of a set of rules of behavior, to those for which no such rules are
known. This paper is concerned with domains that fall between these two extremes, but closer to the
“well understood™ end — domains for which a siet of rules is known. but the rules do not cover the full
complexities of the domain. The rules must also be able to be run efhiciently. In such dornains, rules
and cases both provide valuable knowledge. While the rules embody the undexstanding that has been
codified over the years by experts, cascs contain knowledge of the domain in a more unprocessed
form -— illustrations of actual behaviors that occur in the domain, complete with 1diosyncrasies
and irregularities. Neither source subsumes the other —- the codified knowledge in the rules is not
necessarily well-represented by any given set of cases, while the idiosyneratic knowledge in the cases is
not necessarily captured by known rules. This observation is the basis for the architecture presented
here for combining rule-based reasoning (RBR.) [Hayes-Roth ¢t al., 1883] and case-based reasoning
(CBR) [Kolodner. 1993; Riesbeck and Schank, 1989). The architecture uses a set of rules, which are
taken to be only approximately correct, to obtain a preliminary answer for a given problem; it then
draws analogies fromn cases to handle exceptions to the rulcs.

Having rules together with the cases not only allows the architecture 1o take advarzage of mare
domain knowledge, it also allows innovations in CBR technology. The architectore incorporates two
novel methods for CBR that are based on exploiting the rules of th: RBR component. First. the
rules are used to index the cases. The indexing scheme, termed prediction-based indering, hangs
cases dircctly off the rules, using the rule antecedents to supply appropriate cues for case retrieval.
This avoids having to analyze the domain to identify a suitable vocubulary of direct and derived
indexing features; instead, it takes advantage of the domain structure mmplicit in the rules, and hence
already available. The second role of the rules in CBR is for case adaptation, via a strategy of “case
adaptation by factoring”. The rules are used to factor each source case into the individual steps
that were applied within the case, through a process of rational reconstruction. The individual steps
are then sufficiently fine-grained that the relevant ones can be transferred verbatim from source to
target, despite overzil disparities between the cases. Factoring is thus a way of adapting the source
case to enable transfer to globally dissirailar target cases.

To test the architecture for a real-world task, it was applied to the problem of name pronuncia-
tion. With minimal knowledge engineering, the resulting system. Anapron!, wes found to perform
almost at the level of the best commercial name-pronunciation systemns, aud substantially better
than other machine-leaining systemns apphed to thie task {two versions of NFTualk). Moreover,
Anaspron’s accuracy was found to exceed what it could have achieved with rules or cases alone
thus demonstrating the accuracy improveinent afiorded by combining rule-based and case-based
reasonng.

Y Anupron stands for Analogical prenunciation eystem.



The next section presents the architecture, independent of the domain of name pronunciation.
The Anapron system, which instant ates the architecture for name pronunciation, iz then described.
A set of experiments on Anapron arc presented, the key resnlt being an empirical demonstration of
the improvement obtained by combining rules and cases. The last two sections discuss related work,
and conclude.

2 'The architecture

The architecture is organized as a set of modules that can be configured according to the needs of
the domain; see Figure 1. The minimal configuration consists of four modules, collectively termed
the core method, shown in the diagram enclosed in the gray inner rectangle. These four modules
are the heart of the architecture — they implement the rethod for combining RBR and CBR.
The remaining three modules, termed the support modules. perform various roles in acquiring the
knowledge needed by the core method. Each of these miodules may be included, on a domain-by-
domain basis, as needed to make up the difference between the knowledge needed by the core method
and the knowledge that is already available in the domain.

The sections below describe the core method of the architecture and the support modules, {ol-
lowed by a discussion of design issues. For ease of exposition, examples will be drawn from a toy
{but implemented) domain; the instantiation to name pronunciation is deferred to Section 3.

2.1 The core method

The core method is the heart of the architeerure; it is the part that colves problems by a combmation
of RBR. and CBR. The central idea is to apply the rules to the target problem to get an approximate
answer, and to draw analogies from cases to cover exceptions to the rules. This idea is expressed
in the RC-Hybrid procedure of Figure 2. The procedure treats problem solving as a process of
applying operators to the target problern until it is solved. The procedure applies one operator on
each iteration. It chooses the opcrator in three steps. First it selects an operator to apply via the
rules. It then looks for analogies that. contradict the rules and suggest alternative operators. In the
combination step, it decides which operator to actually apply — the one suggested by RBR or one
suggested by CBR. Underlying this strategy of starting with the rules «nd fine-tuning with the cases
is the assumption that a reasonably fast and accurate set of rules is available. If not, a different
architecture may be called for, such as one that applies CBIt and RBR in the opposite order.

The core method gets its domain knowledge from four sources: a weak theory of the domain, a
case library, a similarity metne. and a set of thresholds, The weak theory is a method for solving
problems in the domain using a set of rules. 1t has two components: the rules themeelves, and a
set of operators. The operators define the legal actions in the domain Each oprrator may have an
associated applicability condition that limits the set of states in wlich it can be apphed. The rules
provide search control. specifying exactly oue operator 1o apply in every problem-rolving state. A
weak theory is weak in the sense that it does not always suggest the right operator to apply — if
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Procedure RC-Hybrid{problem)

Until problem is solved do:

(s}  RBR: Usc the rules to select an operator to 2 ply.

(b) CBR: Lock for analogies that contradict the operator suggested by RBR.
(¢) Combination: Decide between the opcrators suggested by RBR and CBR.

Figure 2: Top-level procedure for combining rule-based and case-based reasoning.

it did, there would bz no reason to apply the architecture in the first place. In fact, even if the
weak theory does nat ¢ontam the right operator to apply, the architecture mayv be able to recover by
applving Theory Extension, which detects such missing operators by noticing failures of the weak
theory to account for examples in the case library, and which invents new operators (and rules) to
correct. the failures (see Section 2.2.2).

As an example of a weak theory, consider a toy version of 3 problem in auto insurance: to
assess the risk of insuring a new client. Sclving a problem in this domain consists of three steps:
determining whether the client is an altentive driver, determining whether he? is in a hostile driv-
ing environment, and, based on the previous inferences, assessing his level of risk. Each step is
implemented by applying one of a corresponding set. of operators. For example, the firct step —
determining whether the client, ¢, is ap atlentive driver — is implemented by applying eitber the
attientive or inattentive operator. The {urrner adds the assertion attentive(c) to the state, while
the latter adds the opposite assertion. Applicability conditions control the order in which opetators
are applied; for axample. attentive and inattentive are constrained to apply only in the initial
state. The weak theory Is summarized in Figure 3.

The next knowledge source needed by the core method is the case library. It is « collection of
cases, where i cage congista of a problem. it< answer, and the chain of operators by which the answer
was derived. In the insurance domain, a case translates into a chient, the client’s level of risk, and
the operators that derived that level of risk for that client The client is represented as a feature
vector. Figure 4 gives an example of a problemn and two cases in this domain. The full case library
in this toy example hag 30 cases

The last two knowledge structures required by the vore method aie the similarity metric and
thresholds, The sinnlacity metric estimat.os how similar two problems are with respect to the ap-
plication of a particular operator. The thresholds are used by the combination module in deciding
whether an analogy should override the rules These are both discussed further helow

The individual modules in the core method are presented in the following sections.

e R R —

?Masculine pronouns are intended in the generie senee unless the context indicates otherwise.




Operators

attentive
inattentive

Rules

high-risk
endangered - .
< mediun-risk
neutral .
lov-risk

If occupation(e) = student thien attentive
elseif sex(c}) = M and age(c) < 30 then inattentive
elself age(e) > 65 then inattentive

elte attentive

If address2(¢) = New York, NY
or address2(c) == Los Angeles, CA then endangered

else neutral

If inattentive(c) and endangered(c) then high-risk
elseif inattentive(c) or endangered(c) then medium-vrisk

else loy~risk

>

‘Student’ rule
‘Young driver’ rule
‘Old driver’ rule
‘Defanlt’ rule

‘Hostile traffic’ rule
‘Normal traffic’ rule

‘High’ rule
‘Medium’ rule

; ‘Low' rule

Figure 3: Weak theory for the tay auvto-insurance exarple. The less-than signs {<) between oper-
ators represent applicability conditions that control the order in which the operators are applied.
The letter ¢ in the rules stands for a client

Target Case #1 Case #6
Nare Smith Johnzon Davis
Addressi Sigrisa Chi House  Sigma Chi House Toyon Hall
Address? Stanford. CA Swanford, CA Stanford, CA
Sex M M F
Age 21 19 22
Qccupation student student student
Car-make Chevrolet BMW Toyota
Car-value 2,500 30,000 3,000
Auswer medium-risk{Johnson) low-risk(Davis)
Operatore inattentive. attentive,
neutral, neutral,
medium=-risk low-risk

Figure 4: A target prollem and selected cases from the insurancs example.




Procedure Index(case)

Until case is solved do:

{a) Usethernles to predict which operator o, should apply to case.
Let r be the rule that made the prediction.

(b) Compare 0, with the operator o, that is observed to have been
applied to case.

{c) I the two operators are the same, store the case as a positive
exemplar of rule r, else as a negative exemplar.

(d}) Proceed to apply operator o, to case.

Figure 5: Procedure for indexing a case.

2.1.1 Indexing

The purpose of the indexing module is to ergasize the cases to make them accessible later for CBR.
CBR will use the cases ta critique RBR: cases are therefore viewed as svidence {ov or against the
rules. A case constitutes evidence for a rule if it iliustrates a place where the rule makes a correct
prediction. [t constitutes evidence agains! a rule if it illustrates a place where the rule makes an
incorrect prediction. The indexing module stores the case as a positive or negative ezemplar of the
rule accordingly.

The complete indexing procedure for a case is shown in Figure 5. It applies RBR, to the case
as if it were a new problem. Step (c) does the actual indexing: il stores the case as a positive or
negative exemplar of each rule that was predicted to apply to it. Step (d) completes one iteralion
of the procedure by applying an operator to the case. It applies 0,. the observed operator, 3o that
when the rules rnake their next prediction (in step (a)), 1t will be based on how the case was actually
solved, not on how the rules would have solved it. Applying the predicted operator, o,, would
be incorrect, because then if the rules predict one wrong operator at the beginning, all of their
subsequent predictions that are based on this initial wrong operator will be thrown off as well.

Once all of the cases have been indexed as deseribed. they can be used as cource exemplars for
analogies. The indexed cases will alse bc used to help in judging analogical cotnpellingness (see
Section 2.1.4).

Given that the rules are not expected to be perfect, wne miny ask how this indexing scheme
performs in the face of rule inaccuricies. Consider the situation where the architecture is presented
with a target problem. and the ~ase library contains a source problem that is similar to the target
and has the zame behavior. Will the indexing scheme be able to retrieve this source? The answer is
ves, regardless cf rule inaccuracies, as long as the rules fire the same way for the source and target
problems This is likely, given that the sonrce and target are similar; the only way for the rules to
differentiate between tivern is to test a property that is both irrelevant to their behavior and not
shared between them. Thus if the rules handle the source correctly, they will file it under the right




P

‘Student’ rule ‘Normal traffic’ rule ‘Medium' rule
/\ ~ / /\\ /\
Positive Negalive Positive Negative Positive Negative
Johnson Johnson Johnson

Figure 6: Results of applying PBI to client Johnson. Johnson is stored as a positive or negative
exemnplar of each of the three rules that make a prediction for him.

rules, and retricve it when these rules fire again for the target problem. If the rules handie the source
incorrectly, they will file it under the wrong rules, and retrieve it when these same wrong rules fire
for the target problem. In effect, the rules act as a hashing function, distributing exemplars into
behavior classes based on (weak) knowledge of the domain.

The indexing scherne just presented is terined prediction-based indezing (PEI) because it indexes
cases by the rulles that predicted which operators should apply — regardless of whether the predic-
tions were correct. Equivalently, it can be thought of as indexing cases by whatever features the rules
fovked at in order to make their predictions. This is related to explanation-bascd indexing (EBI)
[Barletta and Mark, 1988); however, there the rules are used to explain an observed outcome, rather
than to make their own prediction of the outromne. This difference results in guite distinet modes
of aperation i the two schemes. EBY needs to account for any obscrved answer, and thus works
backward from the answer using correct rule applications. It prefers a theory that is as broad as
pessible — one that can even account for multiple answers to the same problem (rendering the rules
nondeterministic). PBI, on the other hand, applies the rules in the forward direction, allowing both
cotrect and incorrect yule applications It uses the same rules as for ordinary rule-based reasoning,
tather than requiring one set for explaining answers and one sct for performance. It prefers a theory
that is as accurate as possible, to miniraize the amount of work the atchitecture will have to do later
to override wrong rule applications via CBR.

Example As an illustration of PBI, consider again the toy auto-insurance example. PBI apylics
to the first client in the case library. Johnson, in three iterations The resulrs are shown in Figure 6.
On the first iteration, the rules are applied, and the ‘student’ rule fires. It predicts the attentive
operator for Johnson. This differs frorn the operalor specified in the case. inattentive Johnson
is therefore stored as a negative exemplar of the ‘stndent’ rule. The inde xing procedure proceeds to
apply the observed operator, tnattentive, to Johnsan, On the second iteration, the ‘vormal trafhie’
rule predicts neutral, which agrees with the operator given in vhe case. Johnson is made a positive
exemplar of the ‘normal traffic” rule. Un the last iteration. the ‘medium’ rule correctly predicts the
operator mediun-risk, biased on the assertions of the previons two operators. Johnson is tharefore
stored as a positive exemplar of the ‘mediur’ rule.



2.1.2 RBR

Rule-based reasoning rnatches the rules against the target problem Rules can match any attribute
of the problem-solving state, including assertions added by previous problem solving. Rule matclung
corresponds to step (a) of procedure RC-Hybrid. The matclung rule is not actually apphed at this
point. but rather is taken as a provisional rule that will only te applied later if not overridden by

CBR.

Example Continning with the insurance example. suppose .arget problem is to evaluate the
riclk of msuring chient Smith (see Figure 4). On the first iteration of procedure RC-Hibrid the
‘student’ rule matches and is selected as the provisiona! rule.

2.1.3 CBR

The CBR module acts as a critic of the RBR module It eorresponds to step () of procedure RC-
Hybrid. It tries o show that the target problem is an exception of the provisional rule by looking
for an analogy between the target problem and a negative exemplar of the rule. The negasive
exemplars of the rule are available in a list hanging off the rule — this was arranged by the mdeing
scheme. The CBR module goes down this list, proposing analogies one at a time, until it runs out
of exemnplars. or the combination module judges cne of the analogies to be compelting 3

The actual proposing of analogies 1« done by apyplying the sumilarity metnic. The metnc takes
three arguments a source problem. a target problem. and an operator to be transferred from source
to target. Here the source problem will he a negative exemnplar. and the operator-<o-be-transferred
will be the operator that was applied to this exemplar. The operator establishes a context for
comparting the problems. Given these three argurnents, the metnc returns two values. a nurerical
rating of the simalarity, called the simularity score- and the implicit rule behind the analogy called
the analogical rule or arule. The implicit rule that anyv analogy makes is that a particular set of
features that were found to be in common between the source and target problems determines the
same outcome for the two problems. Accordingly, the left-hand side of the arule gives the features
that were judged by the metric to be shared by the two problems. and the right-hand sid# gives the
operator-to-be-transferred. The arnle will be used for judging whether the analogy 1 comp.slling
{see Section 2.1.4).

Example Back to the insurance example, the RBR module has just proposed the “student’ rule as
the provisional rule for Smith. The CBR module attempts to defeat thie proposal by Likeming Smith
to previous negative exemplars of the rule  As was shown above, jchneon is one such negative exem:
plat. The CBR module drawe an analogy from Johnson to Smith, with respeet to the inattentive

31 there are marttiple compelling analagies for diffrrent operators. this pracedure will only And the first one The
rationale js that muitiple compalling analegies simply indicate multiple accepthle answere the choice amang them w
immaterisl. In practice, the issue of chuoding among muwtiple (ompelling analoges was found to Lz wainpurtad the
current procedure plecady draws vy few wscorrect analogies (see Section 41 3). lot wone ineorrect analogrs wlieis
an alternative compelling analogy would have been berter



operatot, by applying the similarity metric. A similarity metric can, in general, be as simple or as
complex as desired, ranging from simply counting identical features, to doing = relevance-weighted
feature comparison, to applying a full expert systemn for measuring similarity. For the insurance
domain, & meiric at the simple end of the spectrum was chosen: it counts the number of fields that
match in the two client structures (and it ignores the opecator-to-be-transferred). Text fields are
considered to matceh if they are identical. Numeric fields match if the two numbers fall within the
same interval of a predefined set of intervals. For the analogy from Johnson to Smith. the metric
yields the arule:

If addressl{c) = Sigma Chi House and addiess2(c} = Stanford, GA
anda sex(c) = M and age(c) < 30 and occupation{c) = student
then inattentive.

"This arule expresses the features shared by Jobnson and Smith according to the metric. The metric
returns a sirilarity score of 3, widdch is the nurnber of fields that match between Johnson and Smiith
(and hence also the number of conditions in the aruie).

2.1.4 Combination

The combination modle unplements step (c) of RC-Hybrid: 1l decides which of the other modules
to listen to, RBR or CBR. It does this by evaluating the analogies proposed by CBR. If it decmis
one of them to be compelling, then CBR wing; ¢lsc RBR wins. Decisions of compellingness are
based in part on the similarity score of the analogy. The similarity score is the degree to which the
source and target problems match on relevant attributes, and thus the degree to which the problems
are expected to have the same answer, according to the similarity metric  Because the metric is
only a heuristic, however, the combinalion module does net rely on it exclustvely: 1t also subjects
the analogy to an empirical verification. This is a test of how well the arule — the gencralization
behind the analogy — works for other exemplars in the case Library. The test returns twe results:
the arule’s accuracy, that is. the propertion of exemplars it got right; and the significance of the
accuracy rating, which is 1 minue the probability of getting thar high an accuracy merely by chance.
The calculation of these results 15 explained in more detai) below.

Compeliingness can now be expressed essentially as a conjunction of the two factors discussed
above: the analogy must have a high similarity score, and it must perforns well in the empirnical ver-
ification. The conjunction enables more robust judgements of compellingness. An analogy between
two apparently similar problems will be rejected if the similarity turns out not to he predictive for
other examples; and an analogy that works by spurious coincidence on the available examples will be
rejected if there is not also a plausible similarity betweern ite source and target. The compellingness
of an analogy A is defined more precisely as {ollows.

Compelling-p(A) <=
siunlarity-scorel A) > S5,
and accuracy(A) > 4,
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where 559, 554, Ao, and S¢ are thresholds for deciding when a value is high enough; they can be
provided from the outside, or set by the Threshold Setting module (Section 2.2.3). This definition
requires the analogy to be strong on all parameters -— the score assigned by the similarity metric,
and the accuracy and significance from the empirical verificition. However, an escape clause — the
disjunct involving 5SSy -~ provides a way of accepting analogies between overwhelmingly similar
problems, even if there are not enough data for a cignificanl accuracy reading.

The calculation of the accuracy and sig:‘ficance of an analogy will now be explained in more
detail. The fixst observation is that th= arule may be viewed as a specialization — in particular,
an exception class -— of the provisional rule. It follows that the arule applies only to a subset of
the exemplars (both ncgative and positive) of the provisional rule. [t does not apply to the rest
of the exemplars in the case library. When the arule does apply to an exemplar, it will suggest
the application of the operator o on its right-hand side. This operator may or may not agree with
the operator that is observed to have been applied 1o the exemplar. Several definitions can now be
made:

Let m = number of exemplars that the arule applies to
and that were observed to have had operator o applicd

n = total number of exemplars that the arule applies to

A = number of exemplais of the provisional rule
that were observed to have had operator o applied

N = total number of exemplars of the provicional rule.

The accuracy of the arule is then given by m/n. As mentioned above, the significance is one minus
the probahility, p, of getting that high an accursry merely by chance. In caleulating p, a slight
corsection is needed. The probability of getting m out of n exemplars right is influenced by the fact
that the arule was consirucied Lo be right for one of the exernpiars — namely, the source case for
the analogy. The calenlation of p therefore sretends that this source case does not exist; »t uces

m' =m-1and n’ = n--1in place of m and 2. With this in mind, p can he calculated using
Fisher's exact test [Fleiss, 1981, p.25);

P prob{getting at least m'/n’ by chance)

it

Z proh{getting exactly £/n’ by chance)

m'Sk<n’
(nr) (N - M)
=~ k 10— k
> o 8)
m'LkLn’ ¢
(n’)

Unfortunately, Equation 1 is computationally unpalatable for large values of ¥ An approximation

is therefore used. It assumes that N is large comnpared to n’, which is reasonable for non-trivial-sized
case libraries  Under this assumption, the probabilities can be calculated as if the exemplars are
being drawn from an infinite population. Thus the probabilisy of getting one exemplar right hy
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chance 1s just equal to the proportion of “right” exemplars in the overall population —- namely.
rz= M/N. The probability of geiting & exemplars right by chance will be r* — each exemplar has
the same probability. r, and the probabilities multiply. The revised derivation of p is then:

i

r prob(getting at least m'/n’ by chance)

i

Z prob{getting exactly k/n' by chance)
m<k<n’

2 (’;’)r*<1 - )k (2)

m!<k<n’

&

Example Consider agaio the analogy from Johnson to Smith. To decide whether this analogy is
compelling, the corabination module first runt an empirical verification It tests the arule on the
positive and negative exernplars of the provisional ‘student’ rule. 4 happens that the aruie applies
to four of these exemplars, Johnson and three others. Threc of the four are listed as inattentive.
Thus m == § and n = 4, giving an accuracy of 0.75. Turning to the ‘student” rule as a whole, 4
out, of 10 exemplars are listed as inattentive. So A = 4, N = 10, and » == 0.4. The significance
of the accuracy rating then works out to be 0.64% by Equation 2.* Also, as mentioned earlier, the
sunilarity score of the analogy is 5. The thresholds in this domain were sel to the values $$; = 4.
554 = 6, Ao = 0.66, and So = 0.30 (sec Scction 2.2.3). Thus the analogy is deemed compelling.
The upshot is that Smith is determined Lo be inattentive, by analogy to a similar inattentive student
from the same fraternity. Assuming that no compelling analogies are found in the balance of the
problem solving, Smith will ultimately be assessed as medium risk, rather than low risk as the rules
alone would have predicted.

2.2 The support modules

The knowledge structutes required by the core method rnay not be readily available in all domains.
The role of the support. modules is to help construct these knowledge structures. Each of the three
support modules deals with a particular issue in the construction. The first, Rational Reconstruction,
deals with the issue that while a set of problem/answer pairs may be available for the domain, the
path by which each answer was derived may not be —- but thess paths are necded by the core
method &s part of the case library. Rational Reconstruction uses the weak theory to infer the path
of operatars leading from each problem to its anawer.

The second support. madule, Theory Ixtension. deals with the issue that the weak theory may
have gaps that prevent the abovementioned reconstructions from going through. When such a gap
is exposed Theory Extension prcposes plausible new operators or rules to add to the weak theary
to bricdge the gap.

For companison, Fishar's exact test in Equation 1 would have given 0 667, the. discrepuncy is noticeabls Leoause
N is so small iri this toy examyile.
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The third support rnodule, Threshold Setting, deals with the issne that there may not be prede-
fined values Lo use for the four threshelds in the definition of analogical compellingness. Threshold
Setting chooses values via a learning procedure that generates training exarples for itself from the
case hibrary.

The support modules effectively reduce the knowledge requirements of the architecture to threc:
a weak theory, a set of problem/answer pairs, and a similarity metric. Rational Reconstruction
and Theory Extension have hooks to incorporate supplemental domain knowledge if desired, as
discussed below. The foliowing sections briefly describe the three support modules. A more complete
description can be found in Golding [1991]

2.2.1 Rational reconstruction

Examples of problems and their answers ave available in many domains -— spellings and their pho-
netic transcriptions in pronunciation, patients and their diagnoses i medicine, theorems and their
proofs in mathematics, etc. What tends to be not so widely available is the chain of reasoning by
which each answer was derived — experts have trouble articulating how they pronounced a name, or
arrived at a particular diagnosis, or came up with a proof. Unfortvnaltely, without this information,
an answer is of rather limited use; it can only be applied to new problems in toto. Any svstern that
wants to transfer just part of the answer to a new problem needs some way of breaking down the
answer into individual steps. The Rational Reconstruction module (RR) provides a way of doing
this. Given a problem and an answer -— and using a weak theory of the domain — RR, infers an
operator sequence that leads from the prablem to the answer.

Rativnal reconstruction can be viewed as a problem of search for an operator sequence. The
operators in the sequence are drawn from a weak theory of the domain. The sequence must satisfy
twa constraints. First, it musi account for the given problein and answer:

Velidity:  'The operator sequence. when applied to the problem. must
produce the answer.

It rnay happen that no operator sequence satisfies the validity constraint; this signals that the weak
theory is missing onc or miore operators. In this case, RR calls Theory Extension to fill the gap.
The opposite problem is when there are pwltiple valid operator sequences. Here, RR invokes the
rules of the weak theory a« a hias: it prefers the operator scquence that is closest to what the rules
would have predicted. The idea ix that even though the rules are not perfect. they are good enough
to steer RR toward plausible derivations. This is expreseed in a second constraint:

Minimality:  ‘The operator sequence must deviate minimally from the sequence
predicted by the rules of the weak theory.
This brings uyp a second opportunity for patching the weak theory: if RR cannot find a valid operator
sequence with zero deviation, this rncans that the rules do not predict a valid operator sequence for
the problem at issue. In such cases, RR may call Theory Extension to alter the rules such that they
do predict a valid cperator sciquence  This option is rarely invoked. however, the primary approach
of the architecture is not to fix iraperfect rules, but to supplement them with CBR.
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The two constraints above lead to two strategies for RR: the validity-first strategy, which gener-
ates valid operator sequences and selects the one with minimal deviation; and the minimality-first
strategy, which gencrates operator sequences in order of increasing deviation, and selects the first
valid one. The deviation of ar operator scquence is the sum of the deviations of each of its operators,
where a deviafion metric measures the deviation of an operator. The default metric scores O if the
operator agrees with the one predicted by the rules, and 1 otherwise. The scoring can be made more
sophisticated by including domain-specific knowledge that penalizes deviations according to their
seventty. The validity-first and minimality-first straregies, and cornbinations therecf, define a space
of possible strategics for doing RR. The particular strategy that is best for a given domain depends
on a number of factors, including the accuracy of the rules in the domain. Pruning and ordering
heuristics may be used in conjunction with either strategy to speed it up.

A couple of observations about RR can be made at this point. The first is that RR can be regarded
as doing a form of credit assignment. In particular, suppose that RR is given a problem/answer
pair that has several valid reconstructiuns. each of which violates a different rule. Then RR. in
choesing among these reconst ructions, is implicitly doing credit assignment, as it is deciding which
rule violations hold. Moreover, it is doing the credit assigrinent by invoking a minimality hias —
1t selects the reconstruction with the smallest total deviation from the rules. Put amother way, it
assigns credit so as to minimize the total amount of blame.

The second observation concerns RRs effectiveness as a function of the direciness of the operators
in the weak theory. A direct operator affects the final answer of a problem by directly alterimg some
part of it. An indirect operator does not manipulate the answer iteelf. but rather aflects the choice
of other operators. Indirect operators tend to be harder to reconstruct, because they arc relatively
unconstrained by the answer. RTUmust therefore vely more on its minimality bias in reconstructing
them. This can be dangerous, as the minimality bias is only as accurate as the rules of the weak
theory. By and large, therefore, the suore direct the operators in the wecak theory are, the more
effective RR will be.

There is a variety of work related to RR, including learning apprentices, plan recognizers, student-
modelling systems and story-understanding svstems. These systems all infer some kind of trace of
the reasoning behind an agent’s observed behazvior. Such syslerns typically enforce the validity
constraint; that is, they produce truces that are consistent with the ohserved behavior. The dif-
ferences among systems lie in the bias they nse for choosing among the valid traces, One simple
bias is to return the first vald trace found; this is the approuch taken in PAM [Wilensky, 1083),
a story-understandiug systein. A widely-used bias is to prefer the simplest valid trace —- i.e., the
one that makes the fewest assumptions — as in, for example, the plan-recognition work of Kantz
and Allen {1086]. The ACCEL system [Ng and Mooney, 1994], which hus slso been used for plan
recognition, instead prefers the most coherent trace. CELIA [Redmond, 1992], a learning appren-
ticc in the domain of automolive repair, prefers the valid trace that iz thought to Lest capture the
hierarchical goal structure underlying the lincar sequeuce of the expert’s actiens. Other systems
adopt the same bias as RR: they prefer the valid trace that is elosest to what a theory would have
predicted. Such systems can be classified according to whape they fall in the space of strategies
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described above for RR. Por instance, the BUGGY student-modelling system [Brown and Burton,
1978] uses a minimality-first strategy to infer a model of Low 2 student does arithmetic

Example The toy insurance domain, as usual, will furnish an illustration of RR. A pure validity-
first strategy will be used, with no pruning or ordering henristics. Consider the reconstruction of
the operator sequence for client Johnson (see Figure 4). The validity-first strategy first generates
all valid operator sequences that accaunt for the answer of mediurn risk:

(1) attentive, ~endangered, medium-risk
{2) attentive, neutral, *mediun-risk
(3) #inattentive, sendangered, smedium-risk

{4) +inattentive, neutral, medium-risk.

The deviation of each sequence is then measured. Operators that are found to disagree with the
ones predicted by the rules have been marked above with an asterisk (+). If the default deviation
metric is used, then sequences (1), (2), and (4) tie for first place with a score of 1.0; the choice
among them can only be made arbitrarily. However, the deviation metric that was actually used
for this toy domain treats violations of the ‘student’ rule as less serious than other violations. Thus
operator sequence (4) wing. as reflected in the reconstruction information shown in Figure 4.

2.2.2 Theory extension

In the process of reconstructing how an observed answer was derived, RR is bound to turn up
inadequacies of the wcak theory. In such cases, the Theory Extension module (TE) is invoked
to patch the weak theory appropriately. ‘The general problem of theory repair is quite difficuit.
Wilkins (1988, ch 4] gives a good overview of various techniques that have been tried; there has been
subsequent work under the rubrie of abduction (Morris and QO’Rorke, 1990, for examplel. Brcance
the general problem is so hard. TE takes a resiricted approach to theory repair. It is geared to the
two particular situations in which TE is invoked Ly RR.

The first situation is when RR. caanot find a valid opcrator sequence for a given problem/answer
pair. Viewing reconstruction as a search task, this means there was no complste path from the
start state (containing the problem) to the goal state (containing the answer). TE tries to cornplete
the path by proposing n=w operators to bridge gaps between previously-unconnected states. in
general, there will be multiple sets of operators that will do thie. TE selects the minimal set, where
minimality is defined by a cost metric. The cost metric typically uses dornain-specific knowledge to
evaluate the cost of inventing a new operator hetween a given pair of states.

The gecond situation in which TE may be invoked is when RR cannot find a valid operator
sequence that has zero deviation from the rules. This presents an opportunily to alter the rules to
bring their prediction into agreernent with one of the valid operator sequences. However, TE will
only attempt this under very constrained crcumstances. Inn particular if it is known that a certain
class of rules in the domain fits a partienlar templare, then TE can try proposing a new rule by
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instantiating the template for the current problem. If this improves the deviation score of the best
valid operatcr sequance, then the new rule may be worth adding to the theory.

In the existing implementation, TE requests user approval before actually raaking anv of its
proposed changes. This provides a sanity check on whether the extensions aprear to be reascnable.

Example RR was able to reconstruct the 30 cases in the case library for the toy insurance domain
without recourse to TE. For illustrative purpeses, however, RR was run on a couple of additional
examples and fovced to call TE. In the first of these examples, client Davis (sce Figure 4) was modified
to have an answer of negligible(Davis). RR could rot find any operator sequence to explain this
answer, and so it called TE. RR's search space 1s shown in Figure 7. State 5p 15 the start state,
containing the information initially known about the case: name(Davis) = Davis, address](Davis)
= Toyon Hall, and so on. State s; is the final state, containing the answer negligible(Davis). Arcs
represent operator applications; for instinee, an are leaving state s¢ applies the attentive operator,
resulting in @ state s; containing the new assertion attentive(Davis). In the figure, the attentive
arc and resulting stats 5, bave been collapscd with the: are and resulting state for jts sibling operator,
inattentive. This collapsing was done throughout the diagram to hide distinctions irrclevant to
theory extension.

RR’sinatihity to reconstruct Davis can be seen from the unre.chability of the final state 57 from
the initial state s;. TE’s job is to fix this by adding one or more naw operators. Four operators are
considered, GO0O1 through 60004 shown by the gray arcs in the figure. To choose among these, TE
applies a cost wmetric for the nsuc :nce domain. The metric is based on the pumber of inferences in
a state, where an inference is an assertion addad by an operator. The initial state has O inferences.
State 5; Lias 2 inferences, because two assertions are needed to reach it; e.g.. attentive(Davis) and
neutral(Davis). State s, has 3 inference, because other final states in this domain have 3 inferences,
and the number of inferences is taken to be a constant across final states. The metric then defines
the cost of an operator to be the number of nferences it is inplicitly making by going from one
state Lo ancther. For instance, the cost of 50002 is 2, because it goes from a state with 1 inference
to i state with 3 inferences. If an operrator implicivly makes zero or a negative number of inferences,
i is considered nonsensical, and is assigned an infinife cost. The ¢ffect of this metric is to connect
the initial and final states using existing operators to account for as many inferences as possible,
and new operaters for as few as possible. This is a radimentary exarnple of how a cost metric can
guide TE towarcl minimal extensions of the thesry. By the metric, operators 60003 through 60004
have costs 3, 2, 1, and infinity, respectively; hence TE prefers G0003. This enabiles RR to infer the
operator sequence attentive. neutral, 60003 for Davis

As an example of TE for rules, consider the rational reconstruction of client Johneson. As men-
tioned above, Johnson has four valid operator sequences

(1) attentive vendangered, medium-risk

(2) attentive neutral, smedium-risk

(3) s+inattentive, =encdangered. »madaum-risk
(4) +inattentive. neutral medium-risk.
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Figure 7: RR’s search space for client Davis. whose answer has been modified to be negligible(Davis).
Black arcs indicate applications of existing operators. Gray arcs are for new operators being con-

sidered by TE.

Asterisks (#) in the list mark rule violations The sequence with the smallest deviation from the
rules was sequence (4} (as shown in Section 2.2.1), but it stii} has a positive deviation. This signals

an opportunity for extending the rules. Now suppose that the following rule template is known:

¥f address2(c) = then endangered.

TE may then instantiate the template for Johnson, yielding:
If address2(c) =: Stanford. CA then endangered.

When this rule is inserted into the weak theory, it brings sequence (1) above into complete agreement
with the rules — i.e., it gives it a deviation of zero. This is an improvement from the previous best
deviation, which was for sequence (4), and was norn-zero. TE thercfore proposes this new rule as a
possible extension to the theory.®

2.2.3 Threshold setting

The Threshold Sctting module (Tset) provides a prineipled way of choosing valucs for the thresholds
of the core method. The thresholds are used in determining when an analogy is compelling. The
definition of compellingnese. is repeatcd here for convenience:

Compelling-p(4) <=
similarity-score(A4) > 55,
and accuracy(A) > A
and (significance(4) > Sq or similanty-score(4) > $S,)

The paint of compellingnes: is Lo #nable the architecture to decide when it should listen ta an anal-
0gy — i.e., when the analogy is nght and the rules are wrong. The goal of Tset, consequently, is to

S Although the new rule improves the systemn's account of this particular chient, it ;ay worsen its aceount of othar

clients. The system depends on the user Lo verily that the rules proposed by TE are in fact reasonable additions to
the theory.
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pick values for the threshiolds that will result in analogics being classified as compelling whenever
they would correct wrong answers of the rules. Tset takes a machine-lear ning approach: it generates
‘raining analogies. and tries to pick the thresholds so as to do the right thing for these training analo-
gies -— that is, it should accept analogies that correct wrong answers of the rules, and, conversely,
it should reject analogies that spoil right answers of the rles. The approach is semi-automatic in
that the user has the final say of what values to pick, based on Tset’s recoramendations.

Tset generates its training analogies from the case library. 1t pretends that each exemplar in
the case library in turn is a target problem, and it finde all analogies to it from other exemplars. A
training analogy is classified as helpful if it suggests the right operator for 2 target problem where
the rules would have suggested the wrong operator. An analogy is harmful if it suggests the wrong
operator for a problem where the rules would have suggested the right operator. Tset’s task may aow
be framed as onie of selecting threshold values that minimize the numnber of misclassified analogies,
where: misclassified analogies are the helpful opes that are judged uncorapelling plus the harrnful
ones that. are judged compelling.

While Tset could, in principle, search the 4-dimensional space of threshold settings for the onc
that minimizes the number of misclassified analogies, this turns out to be quite costly 1n practice.
Instead of trying to set all 4 thresholds sirnultaneously, therefore. Tset sets them one at a time.
This gives up the guarantee of finding the global minimum in exchange for tractable run time. The
threshold-setling procedure has three steps. On the first step, Tset temporarily adopts a simplified
definition of compellingness:

Compelling-p’(A4) <=
similarity-score(.4) > S5,

This definition requires setting only one threshold, SSo. to minimize the number of misclassified
analogies. Figure § shows what prototypical distributions of helpful, harmful. and misclassified
analogies would look like at this stage of the processing. The value of 55, that minimizes the
number of misclassified analogics is also shown. Tsct does not choose this value automatically,
however, but. rather displays the distributions to the user and lets hirn make the final decision. The
5S4 threshold is also set at this point, the natural choice heing a value just high enough to exclude
all harmful analogies.

Once a valuc of 85y is sclected, all training analogies whose similarity scores fall below this value
can be discarded: they have already been classified as uncompelling, and so offer no information
about how to set the vest of the thresholds. Each subsequent step of the threshold-setting proce-
dure therefore has fewer training analogies to process — only the ones that are left unclassified by
the previous stcps. This makes the suhsequent steps aster to ruy., although it also makes thar
conclusions less reliable due to the smaller nurmber of exs mples on whih they are based.

The second and third sieps of the threshiold-setting procedure set the Aq and S thresholds
respectively. Thest steps are similar to the first {exeept that there is no analog to S5.). Each step
adopts a temporary defintion of conpeltingness, adding one more conjunct. of the true definition.
At the end of the third step. all fouy thresholds - - S8, 5S4, As, and Sy = will have been set.
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Figure 8: Distributions of helpful. harmful, and misciassified analogies, as a function of similarity
score. 5S¢ and &5y mark the theeretically optimal settings for the similarity thresholds.

Example Tset was used to set the thresholds for the insurance problemi. The results appear in
Figure 9. The distributions of analogies are shown for each of the three steps of the procedure.
These curves do nol quite have the ideal shape depicted in Figure 8. being based on only 30 cases,
the number available for the insuranee problem. The threshold values that were selected for this
task were S5y = 4.0, 55, = 6.0, A¢ = 0.66. and Sp == 0.50. The values for 5S5. $5;. and A, were
selected at or near the optimum values. The choice of Sy was less clear-cut, as the error curve was
largely flat between 0.0 and 0.65 (this was because it was based on a Jopsided 34 helpful analogics
and 1 harmful analogy). Its value of 0.50 was chosen sornewhat. arbitrarily within this range.

2.3 Discussion

A number of “frequently-asked questions™ about the design of the architecture are discussed below.
They are grouped by whether they conceru the combination of RBR and CBR. just RBR, or just
CBR.

2.3.1 <CTombination issues

Why is RBR applied before CBR? Rule-based and case-based reacomug can be combined i
three main orders: RBR first. CBR first. or some interleaving of the two. The architecture presenled
her: adopts the RBR-first strategy. using CBR merely to patch errors left by RBR. This strategy
is appropriate when the rules are reasonably efficient and aceurate to begin with. If the rules are
deficient in some way, the CBR-first strategy may make more sense. If the rules and cases offer more
balunced contributions to the prablem solving, then an interleaving strategy may be best
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Figure 9: Results of applying the threshold-setting procedurc to ti e tay incurance problem. For each
of the three steps of the procedure, the distributions of helpful, b umful, and misclassified training
analogies are shown. The misclassified analogies are the helpful ones below a threshold value and
the harmful ones at or above the value. Dashed lines indicate the values chosen for the thresholds.
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Can analegies be drawn from positive exemplars?  While the architecture currently draws all
of its analogics from negative excmplars, analogies from positive exemplars could also be useful in
certain situations. One way to use them would be to decide between RBR, and CBR by weighing
the evidence from rositive analogies against that from negative analogies. The drawback of this
approach, however, is that it rclies on the case library to illustrate not only the places where the
rules are wrong. but also ali situations where they apply correctly. Given that the rules are assumed
to be fairly accurate to begin with, this could require a huge number of positive exemplars.

An alternative that relies less on having tolal analogical coverage of the domain is Lo use positive
analogies to xesolve nondetersninisin in the rules — places where the rules suggest maltiple operators.
The operator with the greatest support from positive analogies is then selected. This approach is
less sensitive to gaps in positive coverage because it compares positive analogies to other positive
analogies, not to negative analogies. Gaps in positive coverage therefore tend to affect all operators in
the comparison equally (especially if the evidence for each operator is averaged over a set of positive
analogries). Such a scheme was impiemented in Anapron, and is described below (see Section 3.3).
This use of positive analogies may be regarded as a method for combining rules and cases to make
nondetersmnistic answers unique. By contrast, the architecture presented here is a method for
combining rules and cases to make deterministic answers more accurate. The two methods provide
orthogonal functionaliry, and may be used separately or in cornbination. Anapron is an example of
using them in combination.

Could rules and cases be converted into a uniform representation? An alternative 1o a
truly hybrid system — one thar works from multiple representations — is to convert all knowledge
sources into a umiform representation, and work from that. Converting between rules and cases tends
to be hazardous, however; the conversicn tends to yicld inefficient or unreliable representations. See
also Golding and Rosenbloom [1981].

2.3.2 BBR issues

What. if the rules are not of an if-then-clee form?  The architecture assumes that exactly one
rule will fire in any state to recommend the next operator to apply. This affords an easy way of
assigning credit to the rules: a rule is held responsible for the operators it recornmands. This credit
assignment enables the architccture to wnprove the performuance of the rules — it lel= it associate past
mistales (negative exemnplars! with particular rules and later override sinnlar incorrect behaviors by
analogy to the past mistakes In a more distributed. evidence gathering model of problem solving
stich as that of MYCIN [Buchapan and Shortlific, 1984], multiple rules 2an fire, and all contribute
to each decizion that is raade. To accommodate such o rule formalist into the architecture, an
anslogous credit-assignment procedure wonld be needed — one that would ascribe some yproportion
of the credit for each decision to cach of the rules that contributed to it
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2.3.3 CBIt issues

What is the appropriatc level of generality for arules? Each time the architecture draws
an analogy, it extracts the gencralization behind the analogy, and reprecents it as an explicit rule,
the arule. It then uses the arule to do an empirical verification of the analogy. This involves trying
out the arule on other casics in the case library. The purpose is to see how well the gencralization
holds up for other examples.

An. arule is not uniquely deterinined; the only constraint is that it must be a generalization of
the source and target problems. Currently, the architecture makes the arule maximally specific —
it includes in the arule all conditions shared by the source and target (according to the similarity
metric). The idea is to rninimize the inductive leap; this reduces the risk o1 overgeneralization.
However, there is an argument for generalizing more liberally: the more general the arule is, the
easier it will be to find cases in the case librarv to which the arule applies, and thus the more
mformed the empirical venfication will be. Striking an apprapriate balance hetween this greater
ease of empirical verification and the risk of overgeneralization is an area for future work.

Could the architceture save its arules?  Given that the architectnre already goes to the trouble
of extracting the generalizations behind its analogies (as arules), 1t certamly could store them.
Iacorporating the arule into the existing rule set is straightforward: the arnle xepresents an exception
ciass of the rule from which it originated. Thus the arnle would be stored so as to always override
the original rule If the rules arc of an if-then-else form, this means ordering the arule just ahead of
the original rule.

Saving arules in this way would gradually “compile™ the cases into rules, thereby shifting the
burden of problem solving from CBR to RBE  \Whether this should be done is basically a store-
versus-cornpute iradeoff. The architecture can store its arules. in which case it saves the time of
redenving the analogies: or it can compute the arules. in which case it saves the storage cost of
keeping around all past arules. One could imagine resolving this tradeoff in either direction. The
decision io the architecture Lo (re-)compute, rather than store, was based ou the rezsoning that,
because the arules are constructed to be maximally specific (as discussed abave), a policy of stoting
would end up keeping a large number of rules that hardly ever fired: moreover, these rules could
easily be rederived if needed.

How docs the architecture do case adaptation? Case adaptation 1s the process of trans-
forming a source case to make it applicable to a (disparate) target case. Traditional techniques for
case adaptation involve retrieving the entire source solution, and doing localized problem silving to
patch the parts that are incompatible with the target case. The architecture presented hers takes
a different tack: using RR, it factors the source case into individual operator applications. It then
draws analogics from these individual operator applications to the target problim. The individual
operator applications are sufficiently finc-grained that they can generally be transferred to the target
problem verbatirn. Thus the architeclure employs astrategy of “case adaptatson by factoring”. This
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strategy 1s related to the idea of decomposing a source case into smaller parts. or snippets. each of
which addresses one subgoal of the case [Kolodner, 1958].

Can the architecture learn new cases? Classical CBR [Riesbeck und Schank. 1989 involvas
a learning step: after a target case is solved, it is stored back into the case Iibrary to ennch the
systern’s bank of experience. Such a learning step could be incorporated inte the architecture
presenied here by having the architeciure ask, after each problem it sclves, whether its solution is
correct. Xf the answer is affinmative, the case may be added to the case libzary directly. I not.
further dialogue would be needed to debug the answer before it is stored away. This procedure
is not currently iaplernented because it would create a need for run-time feedback from the user
However, additional cases can always be added te the cace library off-line if desired

How is noise in the case library handled? The architecture protects itsclf against inaccurate
cases through empirical verification. A bad case may lead to a bad analogy being proposed: but the
analogy will be rejected unless there is a significant n'imber of supporting cases  The one exception
is if the bad analogy has a high enough similacity score 1o exceed the SS§y threchold: in that event
it will be accepted even without other supporting cases. This i highly uriikely. however. as the 554

threshold should have been set high enough lo avoid such spurious analogics.

3 Anapron

The architecture presented here was applied to name pronunciation resulting in the Anapron sys
tem. Names, because of their varied etvimology. are 2 notorious stumbling block for prorunciation
systems; this has + ade name pronunciation an important problen in text-tengpeech synthesi: 71 he
dornain is well-suited to application of the architecture, as reasonably accarate and officient roles
of pronunciation are known, yet the domain is sufficiently complex that perfect rules have never
been devised — rules inevitabiy have exceptions. This suggests appiication of the archite:ture pre-
sented here. The architecture can take advantage of the existing rules, naperfect though they may
be, while also tapping into an alternative knowledge source, namely examples of names and their
pronunciations. By assimilating hnowledge from both sources the architecture has the potential to
outperforrn existing systems, which are either rule-based or case-bLased. but not teue hybrids

The sections below start by introducing the domain of rame preminciation  The applieation
of the architecture to this domain is then described: and an additiona, analegical mechamsn. s
presented that was incorporated to deal with nonde-~rminism 1n the rules  The desenptions are
at 2 bigh level, to give the basic idea of Anapron’s operation and a sense of tie task 6f name

pronunciation. withoul getting deep into the intricacies of the domain. For full details. sse Golding
{1991].
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3.1 Name pronunciation

Name pronunciation is a problem of practical interest. It comes up in almost any text-to-speech
application, but especially nameintensive applications, such as telephone-based credit validation,
voice mail, and generic reverse directory assistance (i.c., number to name) [Vitale, 1989). The
most important property that makes names unique, as compared to reguiar words, is their varied
etymology. Net only must a pronunciation system infer the language of origin of 4 name, it roust
then decide now to ireat foreign names. Strict adherence to the native pronunciations can come
out sounding stilted at best, and nnintelligible at worst. Whal is needed, assuming an American
user population, 15 some appropriately anglicized interpretation of the foreign languages. These
etymology-related difficulties make names problematic for pronunciation systems. The brute-force
solution would be to comstruct a giant pronouncing dictionary of all names the system is apt to
encounter. ‘The problem xs that the set of narnes is in general open-ended. A svstem reading stories
off the AP newswire, for instance, has to contend with a constantly changing set of newsworthy
individuals. In the end, one can only expend a finite amount of resources building a name dictionary:
pronunciation systems. will always have to deal with the problem of unfamiliar narnes.

Until faicly recently, the solution was simply to pronounce names badly: pronunciation of proper
names was acknowledged to be an open preblem "Klatt, 1987). In recent vears, however a substantial
effort has been devoted to the probleny, resulting in severa! high- quality commercial svstems. The
predominant approach has been to develop rules vailored specifically 16 names, as in, for example,
the Orator™* gystem {Spiegel and Macchi, 1890) and DECvoice [Vitale, 1991]. While these systems
have achieved among the best performance ve. demonstrated, they have also shown the extrere
dificulty of writing rules to cover every contingency. No matter how many rules are written, there
always seem to be exceptions. This observation is the basis for an alternative approach 1o the
problem, which views name pronunciation more as a huge bag of idiosyncratic behaviors than as a
rule-governed process. The approach, embodicd in the TTS system [Coker ef ol 1990], is essentially
case-based, starting from a large dictionary of names and their pronunciations, and pronou neing a
new name by retrieving a relevant source name from the dictionary, and perforuung one of a number
of prespecified transformations, such ae suffix exchange (e.q0., AGNANO == AGNELLI ~ ELLI - ANRO).
TTS performs well — comparably to the rule-based systems mentioned above -— but like those
other systems, still leaves room for improvement. The good. but imperfect perforniance of both the
rule-tased and case-based approaches 1o namne pronunciation suggests cornbimng the two; however,
no previous, practical system has taken a true hybrid approach. Sullivan and Damper {1990, have
combined rules and cases in a model of human pronunciation. but their model generates either a puze
rule-based or a pure case-based solution — it dacs not intermix RBR and CBR within a solution w
Anapron doss.

Name pronunciation it defined hiere as the task of converting an input spelling, e.¢., KEIDEL, into
an output prorunciation. e.g. k ayd ehl {rhymes with My BELL?). The pronunciation is a written

SOrator ic a trademiark of Belliore.

"This is an example of an spproprutely anglicized pronundation. The native German proningation more nearly
rhymes with IDLE [Stefanie Briiningnaus personal cornmanication. 1995},

A 8 P
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Module Funetion Application to KEIDEL
Language Determine language Generic or German
Morphology ldentify prefix, root, KEIDEL = 3 single root morpheme

and sufiix morphemes
Transcription Map letters to phones  kiydeh if Generic: kaydehl if German
Syllable structure  Break into syllables kiy-denl if Generic; Xay-dehl if German
Stress assignment  Assign level of stress Kk 1ydenl if Generic, X ayd~ehl if German

to each syllable

Selection Pick best language/ k> ayd ehl {German)
morphology analysis

Table 1: Hllustration of Anapron’s pronunciation modules for KEIDEL. The output of the modules
has been abridged for clarity.

specification of how to pronounce the name; it could be fed through a speech synthesizer o produce
an actual spoken renditioni. A pronurciation includes the scquence of phones. or sounds in the name.
as well as the level of stress to place on each syllable. Here, the phones are kaydehl, while * and ~
are stress marks. The * says to put secondary stress on kay. The - means pritnary stress on dehl
The notation is taken frorn DECtalk™", but is nnimportant for purposes of this paper.

In Anapron, the task of name pronunciation is divided arnong six principle modules. Table 1
gives a brief account of what each module does. by way of iJlustzation for KE:DE-. Transcription and
stregs assignment are rhe top-level modules: they contribute to the output pronunciation directly.
The other modules are in service of transcription and stress. The language and morphology modules
produce nondeterministic answers. Here, the language module gencrates two possible. language
classifications of the name — “Generic” or German. This nondeterminism is carried through the
other modules until the selection module resolves it by choosing the German analysis. The way the
selection module makes its choice is discussed below {see Section 3.3).

3.2 Application of the architecture

The architecture was applied not to the task of name pronunciation as a whole. but to ils two
top-level subtasks: transcription and stress assignmment. This section skelches the application of the
architecture to cach of these subtasks The knowledge sources are briefly described, followed by an
illustration of the architecture's operation using them

The architecture works from. three knowledge wonrces for cach lask: 2 weak theory, a set of
problem/answer pairs, and a similarity metric. The weak theory fot transcription was based on the
rules of the MITalk text-to-speech systemn [Allen ef al. 1687}, as well as intraductory grammar texts

—_—

SDECtalk s a trademark of Digitsl Equiprient Cotporution




25

for French, German, Italian, and Spanish. Fach operator in the weak theory savs how to map a
letter or letter cluster into a string of phones. For instance, the operator G:s savs to map the letter €
to the sound s, ie., a soft C, as in CENT. The basic operation of the theory is then to work through
the name, applying operators to transcribe cach letter or letter cluster. The rules for choosing which
operator to apply can test the letters on either side of the cluster being transcribed, the language of
the name, and its morghological structure. For example, one rule recornmends the ¢:s operator if the
following letver is 1, E, or Y, and the name is of Latinate origin —- this is the familiar ‘c softening’
rule. A rule can also test how surrounding letters were franseribed; this imposes the constraint
that the surrounding letters be transcribed before the rule at issue is rnatched. Such constrainte
restrict the possible orders in which the letters of a name may be processed. Occasionally a circular
dependency may arise, in which case a deadlock-resolution strategy is invoked. The weak theory for
transcription has a total of 233 aperators and 619 rules.

The weak theory for stres, assigtiment is based on MiTalk. the grammar texts mentioned above,
and the stress theory of Liberman and Prince [1977). The goal of stress assignment is to assign 2
level of stress —- primary, secondary, or zero (i.e.. no stress) — to each syllable in the name. The
weak theory starts by assigning stress to each morpheme in the name individually. This is done
i two backward passes of the morpheme: the first pass makes a hinary decision as to whether
each syllable hus zero or non-zero stress; the second pass refines these binary stress levels into
a proper three-valued stress pattern. The stress patterns for the individual morphemes are then
combined irto a stress pattern for the whole name based on imposing a hierarchical structare on
the morphemes. The operators of the weak theory provide primitives for implementing the above
procedure. For instance, two operators implement the first backward pass of assigning zero or non-
ze1o stress to cach syllable of a morpheme: ¥SR, which identifies the last syllable with non-zero
stress: and propagate, which repeatedly jumps backward to the next syllable with non-zero stress.
The rules of the weak theory control which operator is applied and how it is instantiated — e.g. how
many syllables the propagata operator should jump back each time. The rules can test the spelling
of the name, its language. morphological structure, cranzeription, and syllable structure. The weak
theory for stress has 7 operators {not including instantiations thereof) and 29 rules.

The sccond knowledge source of the architecture, the set of problem/answer pairs, was derived,
in the case of both transcription and stress assignment. {rom a pronouncing dictionary of 5000
surnarnes.® The dictionary incluces the 2500 most frequent names in the US, 1250 sampled randoraly
from ranks 2500 through 10,009. and 1250 from ranks 10,000 to 80.00¢. The utility of these last two
groups is to illustrate patterns that are important hut that may not appeur in the VEry COMInon
names.

The sirnilarity mctrics used in Anapron are based on broad, approximate knowledge about which
factors determine & given aspcet of a mame's pronunciation. For transeription. thece are two fac-
tors. Firat, the Jetters in the immediate vicinity of the clusterto-be-transeribed affect the cluster's
pronunciation. This is due to assimilation effects. while the mouth is pronomcing the cluster ir
is anticipating the next sounds, as well as retaining aspects of the previous ones. The second fac-

?Thus dictionary was kindly previded by Bellcces for purposes of tlus researchi




RBR CBR Cornbination

K Kk - Kk
:5 Elay — El:ay
D D:d — D:d
E E:ey Eeh t:eh
L L:1 — L:l

Table 2: Transeription of KEIDZL under the German analysis. The table shows the transcription
operators recommended for each letter of the name by RBR, CBR., and Combination.

tor affecting the transcription of the cluster iz the overall “shape™ of the name —- essentially, its
pattern of (orthographic) consonants and vowels The shape aflects the pronunciation in that it
reflects global influences such as langnage and morphology. The transeription metric takes the two
preceding factors into accoun! by combining a detailed comparison of the two narnes immediately
around the letter cluster being transcribed with a rough global comparison of the narnes.

The stress metric is analogous to the transcription metric: it does a careful comparison of the two
names in the region that is most critical for the particular stress operator at issue, as well as a rough
global comparison, to pick up on effects of language and morphology More detailed specifications
of the metrics can be found in Golding [19011.

The remainder of this section illusirates how Anapron, given the abovementioned knowledge
sources, pronounces names. The Hlustration will Le for the transcription of the KEIDEL example of
Table 1. Transcription of KEIDEL is actually performed twice. once assuming the name is Generie,
and once assuming it is German. This exammple is for the German case. As mentioned above,
transcription involves applying operators to the name, in some order, to map letter clusters to
strings of phones. Anapron selects the operators via the RC-Hybrid procedure. Table 2 summarizes
the results, disregarding the order in which the latters are actually processed. For the first letter
of the name, X, RBR is invoked first, and suggests the K:k operator, whicli maps the letter x to
the phone k {as in KITE). CBR is then invoked 15 propose analagics contradicting this choice of
operator, but no such analogy is found. The Combination module therefore applies the operator
suggested by the rules, x:k. Application of the next two operators in the table. El'ay and b, 18
similarly uneveniful.

For the E. things get miore interesting. ‘The rules suggest Erey, the default pronunciation of €
in GGerman (as in FREGE). However, CBR finds au analogy from VOGEL which suggests the £.eh
operator instead. This analogy has a similarity score of 0.73. Empirical verification reveals that
the generahization behind the analogy ~- whicl says to apply £ ek in Gerrnan names in a particular
context — appliea to 7 cases in the case library: EngLRROCK, FOGEL, GRIBEL. LOGEL. SCHNABEL,
SPEIDEL. and of course VOGZL All 7 have E:eh applied Thus the securacy of the analogy is
7/7 = 100 The significance works out to be 0.71. The way the thresholds were set, the analogy is
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deemed compelling. Thus the Combination module selects E:eh, overriding the rules by the analogy
with VOGEZL.

For the final L of the name, the rules suggest 1.:1, which again goes unchallenged. Thus the
output of the transcription module for the German analysis of KEIDEL is Xaydehl — as opposed to
kaydeyl, which is what the rules alone would have said.

3.3 Positive analogies

As mentioned above, the language and morphology rules in Anapron return multiple answers. due
to the difficulty of uniquely analyzing these aspects of a name. This rule nondeterminiem is resolved
by the selection module, through the method of posifiue analogres. The idea of the method is to
use the positive exemplars in the case base to reinforce correct rule applications, just as negative
exemplars were used to detect incotrect rule applications. The method starts with multiple candi-
date promunciations of a name. corresponding to the different ways of applying the language and
morphology rules. It evaluates each candidate pronunciation by secing if the operators that were
applied in deriving that pronunciation secr to have been applied correctly. It does this by drawing
analogies between each operator application in the pronunciation and the positive exemplars of the
rule that recommended that operator. The closer the operator application is to a previously-seen.
correct application, the more favorable the system’s evaluation of that operator will be. Specifically,
the score for an cperator is the similarity score of the best analegy found. The overall score for a
pronunciation is t.xe average of the scores of its transceription and stress operators 39

Table 3 shows how positive analogies were uscd in the KEIDEL example. Ouly the analogies for
transcription orerators are shown. On these, the German analysis outscored the GGeneric analysis;
the same tura: out to bie true of the overall scores, which is why the German analysis was ultimately
selected. The naain reason the German analysis did better on transcription operators is that the
Generic analysis had little support for its EIiy operator; REID was used, but scored poorly duve to
its global dissimilarity from KEIDEL. The name RIEDEL, while valuable elsewhere in the Generic
analysis, could not help with Eniy, because its 1 and £ are in the wrong order. One other point
concerns the E:eh operator in the German analysis' thic aperator was applied by analogy. not by
a rule, thus there are no positive exemplars on which to base its score. Instead. the score of such
an operator xs taken to be the similarity score of the analogy that suggested it — in this case the
VOGEL/KEIDEL analogy.

1% addition. a prommnciation tay recrive bonuees or pensltizg assigned by the rules. The most common type
of bomie ie when a nams containe a prefis or suffix characteristic of .+ pasticular latguage. For mstance. the nime
QOCHAMBE A0 has the characteristic French ending -24v; the Frendh analysis of this nume therelore receives a brnus.
These yiile-based scores complancnt the wnalogy-bused scores, and ensble the svstem to decide among ¢orapating
pronunziatiots of a nsine ¢ven fu the absence of & case Lbrary. albeit sn & Jess informed waAy.
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Op Analogy Score Op Analogy Score

Kk KESLER — KEIDEL  0.67 Kk KEELER — KEIDEL 0.88

El:ay SPEIDEL — KEIDEL  0.67 El:iy REID — KgipeEL  0.00

D:d SpeipelL — Kziper 091 D:d RiepeL — Keipzi,  0.71

£eh Voagr — KeipgL  0.73 E'e RigDEL -— KEIDEL  0.88

[l GeBEL — Kzipgp,  0.91 Ll RiepEL — KEIDZL, 0.8
Transcription score: 0.76 Transcription score:  9.56
{a) German analysis (b} Geperic analysis

Table 3: Positive analogies for transcription operators of the German and Generic analyses of
KEIDEL.

4 FEvaluation

Anzpron’s performance was evaluated in three phases. The goal of the first phase was to gain a
quantitative understanding of systemn performance: a profile was taken of how active each parf of
the: systern was in practice, and any deviations from the exprecled performance were analyzed, The
second. phase stepped back f1om this internal analysis of the system and looked at the “bottom line”:
how does the performance of the rule/case hybrid approach, as embodied in Anapron, compare: to
that of other approaches? Commercial svstems, other research systems, and humaans were included
in the comparison. Once the overall performance of Anapron was ascertained, the third phase
was to understand how it achicved this performance. by evaluating the contribution of each of its
cornpenents. This involved syslematically modifying each component. and measuring the impact on
system performance, The sections below disenss the three phases.

4.1 Exploratory measurements

Exploratory measureinents of Anapron were taken to get a quantitative picture of its operation.
and Lo detect any deviations from the expected behavior Twe main findings ernerged (1) The
system found fewer strong analogiss for rare names than for cornmon names althongh the total
number of analogies. strong or wesk, remained constant; and (2) The system's criterion for ana-
logical compellingness was too striet. The sections below present the test sot that the exploratory
measurements were hased on and the measurements that were mads, together with the resulting
findings. The rneasurements are grouped by whether they were purely objective. or included a
subijective component.

4.1.1 Test set

The test net for this and the other experiments was drawn from the Donnelley corpus, a database
of over 1.5 million distinet surnaines covering 72 rillion houscholds in the US. Narries in Donnelley
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range from extremely comnion (e.g.. SMITH, which occurs in over 670,000 households) to extremely
rare {e.g., BOURIMAVONG, which occurs in 1 houschold). The number of households that have a
particular name will be referred to as the frequency (of occurrence) of the name.

Test gets were constructed from Donnelley by selecting points of interest along the frequency
spectrum, and randomly sampling an appropriate number of names at each point. If Donnelley had
fewrer than the desired number of names at some frequency f, then the names were selected randomly
from the narrowest symmetric {requency band around f that was big enough. The test set for the
objective measurements contains 13 exponentially-distributed frequencies: 1, 2. 4, 8, ..., 40986.
The frequencies were distributed exponentially because this yields evenly-spaced measurements. of
Anapron’s behavior — this was determined in a pilot study, which showed that Anapron’s percentage
of acceptable pronunciations drops linearly as frequency is decreascd exponentially. The test set has
a total of 10,000 names, with between 230 and 1000 at each frequency. These numbers represent
a tradeoff between the cost of running the test. and the size of the confidence intervals in the
resulting measurements. The names were chosen to be disjoint frorn Anapron’s dictionary, since

nanes pronounceable by rote lookup are unrepresentative of system hehavior.

4.1.2 Objective measurements

Objective measurements were made for both the rule-based and case-hased parts. of the system. The
rule-based measurements counted how many operators were applied by each module — language.
morphology. transcription, syllable structure, and stress assigninent. The case-based measurements
counted how many analogies were proposed, accepted, and rejected. and for what reason, where the
reason corresponds 1o the way the analogy satisfied or failed to satisfy the compellingness predicate.
All measuremients were broken down by name frequency. to see how the svetem’s behavior changes
as the names get. rarer and thus more difficult to proncunce.

The main finding from the objective measurernents was an effect terrned the analogical decline.
It says that as name frequency decreases, the number of highly plausible analogies Lo the name
decreases, where a highly plausible analogy is one with a very high sirnilarity score (this notion
will be made mare precise below). Figure 10 shows the transcription data on which the analogical
decline is based. It plots the number of transcription analogies as a function of name frequency. It
is split into two graphs — one for accepled analogics, and one for rjected analogies The accepled
analogies in turn are broksn down into two reasons for acceptance, denoted signtficanl. and highly
plausiblc. These correspond to which of the two disjuncts the aralogy satisfies sn the last clauze of
the definition of compellingnescs ' The definition of compellingness is repeated here for convenience.

Compelling-j(A) <=
~imilarity-score(A) > 55,
and accuracy(A) > Aq
and {significance(A) 2 Sp or similanty-scorc(A) 3 $S,)

1 Anadogses matching Lotk disjwicts are cowited as highly piausible ~ thix reflects the nyctem's procesung of sch
analugins. After Juoking at their sintlarity seore amd accuracy, the nyatem declares them ecompelling for reasan of high
plausibility. Tt linx no reaxon (o ehock further whether they are aleo sigraficant
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Figure 10: Number of transcription analogies as a function of name frequency. Fach of the four
curves plots the nurnber of analogies that were accepted or rejected for a particular reason. The
nurcber of names at each {requency has been scaled to 1000.

Since highly plausible analogies match the last disjunct of this definition, they can now be seen to
be those compelling analogies whose similarity score is S5, or greater. Kejected analogies, like the
accepted analogies, arc broken down into two groups, this time for the two reasons for rejection:
maccurale, and unsupporied. These correspond to whether the analogy failed to satisfy the second
or third conjunct, of compellingness.}?

To test. for upward or downward trends in these cucves, a Spearinan rank-correlation test [Daniel,
1990} was run on zach. The results were that the curve of highly plavsible analogies was found
to decrease (p(r.) < 0.0, p(D) < 0.01), but no other significaut trend was found. This means
that the system found fewer highly plausible analogies for rare names. Note, however, that this
does not mean that casc-based reasoning is uszless for rare names — it s mere.y less effective
at finding highly plausible analogies. In fact, the number of “noginal plausibility” analogies does
not decreasc significantly, as dernonstrated by the absence of a decreasing trend in the curve of
significant analogies, which counts all accepted analogies other than highly plausible ones. A further
investigation of the analogical dezline can be found in Golding [1091}.

4.1.3 Subjective measurements

Subjective measurernents of the system's behavior were muade not on the 10.000-name test set de-
scribed above, but on a gcaled-down 1,000-name version. This was necessary to make it feasible

12 Anulogies that feil to satisfy bath canjuncts are counted as inaccur ate, again because thic can be determined from
the similarity score and sccuracy. withaut having to test whether they are unsuppoited. Also, there ia technicaly a
third reason for rejection, impliusidle, for analogies that have n sinilarity score less than 58, and thuc £ajl to satisfy
the first conjunct of corapellingness. Most ilplausible analogies are never generated by Anapron; thesystem has heen
optimized to not retrisve the very distant analugs that would give ries to such analogies  Consequently, implausible
anafogics cannct be accuratdy counted., and are omitted frum Figure 10.
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to obtain human judgements. The 1,000-name test set had 250 names at each of four (roughly)
exponentially-distributed frequencies: 1, 32, 256, and 2048.

The subjective measurements consisted of judgements, for each name, about the acceptability of
the following: the overall pronunciation. the individual transeription and siress operators applied,
the choice of language/morphology analysis, and the analogies proposed (whether aceepted or re-
Jjected). The judgernents werc made by the first author. To facilitate this rather laborious process,
a judgement edilor was used, which provided a grapbical user interface for entering or changing
judgernents about a name. The editor also verificd that the judgements for a name were complete
and consistent.

The main result of the subjective measurements was that errors of analegical emission (help-
ful apalogies that were missed) were found to greatly outnumber errors of anslogical commission
(harmful analogies drawn). This suggests that the svatern’s analogical compellingness criterion miay
have bieen too strict. This could be fixed by lowering the system’s thresholds'®. thereby relaxing
the compellingness criterion, or by re-working the similarity metrics to allow better discrimination
between good and bad analogies.

4.2 System comparison

In the second phase of the evaluation. Anapron was corapared with a variety of other mame-
pronunciation systemns o see how the performance of the rule/case hybrid method compares with
that of alternative approaches. Seven other systems were wsed in the comparison: three state-of-
the-art commercial systems, two versions of a rnachiue-learning system (NETtalk), and two huinans.
The comrmercial systers are the same ones mentioned earlier (see the beginning of Section 3): the
Orator™ system from Bellcore and DECvoice from DEC, both of which are rule-based, and TTS
from Bell Lals, which is case-based. The two versions of NETtalk are BP-legal, which is the vanilla
version of NETtalk [Sssjnowsi:i and Rosenberg, 1987). and BP-block, which is NETtalk enhanced
with 2 block-decoding postprocessor [Dietterich ef al., 1990). The sections below sketch the test set
design, and results of the experimen' A more complete presentation can be found in Golding and
Rosenbloom [1693].

4.2.1 Test set

The test set for the system comparison was similar to that uecd in the subjective measiurements.
except that: (1) only 100 names [rot 260) were chosen at each frequency, to reduce the burden on
the human test subjects; and (2) the test set wus no longer constrained to be disjoint from Anapron's
dictionary, as an unbiased measirenient of aystems performance includez names both in and out of
the dictionary.

13The reenles of the threshold modification study suggest that the most ei “tive threshald to lower wonld be $S¢:
sce Section 4.3.
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4.2.2 Design

Beeanse there is no objective criterion of correctness for name pronunciations, a pronunciation was
evaluated by asking human test subjects whether they found it acceptable. Each systein was run
on the 400-name test set described above. The output of the computer systems was collected in
the form of written pronunciations; the output of the huran premouncers was tape-recorded and
transeribed as written propunciations. The two versions of NETtalk were trained on Anapron’s
500U-name pronouncing dictionary.

A casselte tape was made of the pronunciations generated by all systems. This involved, for each
pame, elirninating duplicate pronunciations, and perinuting the remaining pronunciations randomly.
The order of names in the test set was permuted randomly as well. To hide the identities of the
systems, all pronunciations were read by the DECtalk speech synthesizer. A panel of 14 human test
subjects listened 1o the cassette tape and rated the acceptability of each pronunciation.

4.2.3 Resulis

The main results of the system coraparison appear ia Figure 11. The names of the commercial
systems and humans have been omitted as their identities are not relevant here. The figure gives the
percentage of acceptable scores. vut of a toral of 3600, awarded to each systern (5600 = 14 judges
x 400 pronunciations). The scores are broken down by name frequency. The figure includes an
Imaginary ninth system, labelled Ubound, which generates for each narne the pronunciation that
received the greatest number of acceptable votes from the judges. [t measures the degree to which all
judges can he pleased simultaneonsly, uting just whie pronunciations available from the eight systerns
tested.

Figure 11 shows that Anapron performs almost at the level of the commercial systems, and
substantially better than the two versions of NETtalk. Also, although the eight systems seem to hit
a performance asymptote at 93%, the Ubonnd system demonstrates that it is possible to score at
least 97%. This suggests that there is room for improvernent in all systeras.

To detect whether the differences between Anapron and the other systems were statistically sig-
nificant, an ANOVA was run, followed up by a Bonferroni multiple comparison procedure  The
results are shown in Figure 11 as annotations on the scores in the table. Overall. Anapron outper-
forrmed the twio versions of NETtalk. but the commercial systems, humans, and Uhound did better
than Anapron. However, in soms frequency ranges. a significant difference between Anapron and
certain commercial systems could not be detected.

Given that Anapron is able to expluit two knowledge sources, while the other computer systems
use just one, it may be surprising that Anapron did not outperform the commercial systerns. It
should be borne in mind, however, that Anapron’s knowledge sources were put together as rapidly as
possible from whatever rules and cases could be obtained — basically the MV Talk rules and a 5.000-
name pronouncing dictionary The commeraal systems, in contrast, use extremely high-quality,
and unfortunately proprietary, knowledge sonrees — carcfully-tuned rule wets for the rule-based
systems, and a dicticnary of over 40.000 names for the case based system. Anapron was in facl
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Svstem Nare frequency Overall
2048 256 32 1

Ubound 98+ 934 98+ 96+ 97 +

Humanl 9T+ 934 934+ 88 93 +

Human?2 8+ 944 944+ 86+ 93 +

Coml 9T+ 954 934+ 90+ 93 +

Com?2 96+ 9047 8T +7 86+ 80 +

Com3 96 -+ 914+ 834+ TR -7 80 4+

Anapron 91 88 85 80 86

BP-block & - 83- 7T - 69 - 78 -

BP-legal 78 - 12- 66 - 52- 67 - BP-jegal
65 T T "

2048 256 32 1

Name frequency

Figure 11: Percentage of acceptable scores for each systern. broken down by name frequency. The
data are shown as a table and as a graph. Scores in the table have a plus sign (-+) if higher than
Anapron’s score, or a minus sign () if lower. All differences are significant at the 0.01 level, except
those marked with a question mark (?), which are not significant even at the 0.10 level. The humane
were omutted from the graph to avoid clutter; their cnrves would hie between those of Ubound and
ComZ. The curve for BP-legal was truncated when it ran off the bortorm of the graph.

found to improve on the perforrnance of its rules or cases alone (see Section 4.3): it would appear,
however. that in the system comparison, this improvement was outweighed by the mediocre quality
of the rules and cnses used. Thus while Anapron provides a proof of coneept. of the architecture
— a demonstration that combining rules and cases improves performance — actually using this
improvernent to outperform commercial systems mnst wait until such time as cornmercial-quality
knowledge sources can be obtained for testing.

4.3 Modification studies

‘1o gauge the contribution of Anapron's components 10 its averall perforrance, a sev of experiments
was performed in which various cornponents were modified, and the effects on system performance
were observed. Five such studies were run, inodifying: rules and cases, throsholds. language knowl-
edge, morphology kn.wledge, and syllable-structure knowledge. The first study — on rules and
cases — directly investigated the effects of combuming rule-based and case-based reasoning. It pro-
vided the key result that the systermn achieved higher accuracy by combining rules and caces than it
could have achieved with either onc alone. The threshold study tested how sensitive the system’s
performance was to the threshold settings used in the definition of aualogica) compellingness — ie.,
SSo, 584, Ag and Sg. Extrene raisiug or lowsring of any one threshold was grnerally found o hurt
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accuracy, although lowering 55, sometimes improved accuracy at the expense of increasing run time,
The remaining three studies concerned the syst=m’s support knowledge — i.e., knowledge needed in
support of the two top-level tasks, transcription and stress. Degrading the language or morphology
knowledge sufficiently was found to have a substantial negative impact on system aceuracy, while
degrading syllable-structure knowledge had a relatively minor effect. These studies are described
more fully in Golding (1991}

The rule/case modification study {Golding and Rosenbloom, 1991] is the subject of the rest of
this section. The test set, design, and results are discussed bielow.

4.3.1 Test sct

Like the system comparison. the rule/case experirnent required a great deal of human effort in the
evaluation. The lLest set was therefore made the same size as in the system comparison -~ 100 names
at each of four frequencies. The only difference was that, as in the exploratory measurements, the
test set was constrained to be disjoint frem Anapron’s dictionary, since again rote lookup hehaviors
were not of interest.

4.3.2 Design

The rule/case study involved independently varying the strengtl: of the systeny's rules and cases. For
cach cambination of rule strength and casc strength, the systemy was run on the 400-name test set,
and its accuracy and run timne were recorded  Accuracy was measured as the proportion of acceptable
pronunciations generated by the system, where acceptability was judged by the first author.’ All
Jjudgements were cached and re-used if a pronunciation recurred, to help enforce consislency across
trials. Run time was the average time, in seconds, for the sysiem Lo pronounce a name in the test
set. The system, wrilten in CommnonLisp, was run on a Texas Instruments Microexploter with §M
memory.

The rules were set to four different strengths: 0, 1/3 2/3. and 1. A strength of 1 means all
transeription and stress rules were retained in the system. Strength 0 means that all rules were
deleted except default rules. The default rules transcribe a letter or assign stress if no other more
specific rule rnatches. The default rules canuot L deleted, otherwise the systein would be unable
o generate a complete pronunciation for so..e names. Retaining the default rules corresponds to
keeping 137 of the 619 transcription rules and 16 of the 20 siress rules. Rule strengthe between
0 and 1 correspond to retaining & proportional nuniber of non-default rules in the system. Each
strength is obtained by deleting a random subset of the non-default rules from the next higher
strength.

The cases were set 10 six strengths: 0, 1000. 2000, 3000. 4000, and 5600. The strength is just
the number of names that were kept in th> cace lib-ary. Again. each weakening of the case library
produces an arbitrary subset of the previous case library.

HThe firet author was an unusualy lisrsh judge, thus the scores here me ot dircetly comparable 6o these of the
aystem camparison.
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Rule Case strength {x 1000)
strength 0 1 2 3 4 5

1 56 65 65 67 67 68
2/3 46 54 56 B6 57 59
1/3 33 39 43 44 46 47

0 19 27 32 34 35 36

Figure 12: System accuracy, shown as a table and as a 3D graph. Each value is the percentage of
names in the test set for which the system produced an acceptahle pronunciation.

4.3.3  Accuracy results

Figure 12 shows system accuracy as a function of both rule strength and case strength. The main
result is that accuracy improves monotonically as rule or case strength increases. The fotal improve-
ment in accuracy due to adding rules is between 32% and 38% of 1he test set {depending on case
strength}. For cases it is between 12% and 17% (depending on rule strength). This shows that rules
and cases each contribute to the system’ overall aceuracy Tt is only by having both knowledge
sources that the system is able to achieve its best, performance.

4.3.4 Run-time results

Figure 13 gives the results on run time. The interesting point here is that when the case library is
large, adding rules to the systein actually decreases run time For exainple. with the case library
at size 5000, increasing the rules from strength 0 to 1 lowers run time from 10.2 to 7.2 seconds per
name. The reason is that adding rules to the system improves the overall accuracy of the rules,
barring sociopathic effects. When the rules are more accurate, they will have fewer exceptions.
This translates into fewer negative exemplars, and thus fewer opportunities to draw analogies. The
foregone analogies result in a corresponding savings in run time. In short, adding rules to the system
reduces the load on the CBR componeat. This dernonstrates that RBR and CBR do not merely
exist side by side in the architecture: they interact beneficially.

5 Related work

A number of other inethods have bieen praposed for combming RBR and CBR. Fack method is
designed around a particular set of knowledge requirements: for instance some methods expect
independent rules and cases, while others start with just one knowledge source and derive the ather
from at. Methods also differ in their approach 1o integrating rules and cases; sorne focus on how and
when RER and CER can each bie profitably inveksd, while others concentrate on how to reconcile



Raule Case strength (x 1000)
strength 0 1 2 3 4 5
1 1.3 30 41 52 63 7.2
2/3 12 31 44 358 7.2 &5
1/3 1 3.0 44 59 76 93 0
0 0.9 3.0 45 63 82 102 ™~ Rules
M ~ ' )
Cases

~

Figure 13: System run tirae, shown as a table and ac a 3D graph. Each value is the average time
{in seconds) for the svatem to pronounce a name in the test set.

conflicting results of RBR and CBR Figure 14 organizes the methods into a huerarchy acccrding to
these differences.

The first branching point tests waerher the rules and cases used by the method are dependent
or independent. If the rules and cases are dependent. it means that one was derived from the
other. Such methods are labelled as efliciency-improving; their prirnary motivation 1s 1o expiess
their knowledge in whatever form will make prollem solving inoet efficient  The methods with
independent rules and cases are jabelled as accuracy-improving, the prinary motivation here i to
maximize problem-solving accuracy by exploiting multiple knowledge sources.

The efficiency-improving methods can be fucther broken down according to whirh of thewr knowl
edge sources was derived from which. Most CBR systeras that include a rule component have cases
that are derived from their rules. The cases are records of how the rmiles were apphed to partieny
lar examples encountersd previously. By reasoning from cases the systems bvpaes the potentially
lengthy process of solving a new problem from ccratch via the rules. For example, CASEY [Kotou
1928] works in the domzin of heart-failure disgnosie It has a complete bur sleaw eev of rulss — in
the form of o rausal model —- {or diagnosing heart failurez. When given a rew case to diagnose.
it tries to relate the case 1o 2 similar case diagnosed previously \When 1t can find such 4 case 1ts
answet usually agrees with what the causal model wonld have said, but is obtainzd an average of
two orders of magnitude faster. PRODIGY/ANALOGY [Veloso. 1992) cau be regarded as a gens ral
architecture for combining RBR and CBR to improve efficiency. PRODIGY /ANALOGY s equiv-
alent of rule-based reasoning is problern solving via search 1ts version of case-bassd reasening is
derivational analogy [Carbonell, 1960]

The systems whose rules are derived from their cases extract the rules by soine general zation
procedure. The sysiems must still keep the cases around, becaass their rilec do ot encode ali of the
knowledge in the cascs. The rules in these systerns can serve various purpesss such as ernalling a
more compact representation of the daa, a¢ 13 Quinlan and Rivest [1989) er providing more eSicient
access to the cases, as i Dacdalus {Allen and Langley. 1940

Systeme utilizing independeit rules and cases are much closer i gpint 1o Anapren Agan the
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Efficiencyv-improving Accuracy-tuproving
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f o - 1
Cases derived Rules derived Emphasis on Emnphasis on
from rules from cases invocation combination
¢ CASEY a Quinlan s CABARET l_""'l"—‘—]
«PRODIGY;  and Rivest * GREBE Weak  Knowledge-based
ANALOGY  »DAEDALUS ¢[KBALS Il mnthod method
RANK
¢ FRANK »CELIA

e Quinlan

Per-case Similarity + Sirnilarity +
knowledge  meta-knowledge  other cases

o« MARS e DANIEL * ANAPRON

Figure 14: Taxonomy of methods for combining RBR and CBR Exaraples of systems that use each
method are listed at the leaf nodes.

systems fall into two groups. The first group emphasizes how and when to mvote the RBR and
CBR vomponents; the second group emphasizes how to combine the results once the components
have been invoked.

Systerns that. ernphasize invocation include CABARET [(Rissland and Skalak. 1991], GREBE
(Branting, 1991}, IKBALS 11 [Vossoe et al, 1991]. and FRANK [Rissland ef al.. 1993] These
systems are designed to gather evidence to support a user’s position. CABARET. GREBE. and
IKBALS 1T work in the domain of legal reasoning. finding support for one side or the other in a
legal case. FRANK has Leen applied to the task of diagnosing back injuries, znd generates medical
reports reflecting the user’s expository goals (e.g. downplay the seriousness of the injurs: or give
a balanced account of the evidence). Because these systerns are not intended to make an actual
decision about whether the user's position is right or wrong, they do not have to resolve conflicts
between HBR and CBE; they merely report all of the evidence. The effort in these svstems therefore
goes not into combining the results of RBR and CHR, but into determining when RER and CBR can
each be profitably invoked to contribute to the target problem. CABARET uses a set of heuristics
for this purpese, such as “If a rule fires with an undesired conclusion, invoke CBR Lo find cases that
discredit the rule”. GREBE uses 2 control strategy that calls on CBR to operationalize abstract




rule antecedents. and calls on RBR to establish and elaborate matches between a source and target
case. IKBALS 1 starts with the rules, only invoking CBR when it encounters an open-textured term
that cannot be interpreted by further rule chaining. FRANK uses blackboard-based opporinnistic
controj to select the most appropriate reasoning method to apply to a particular subgoal.

In the second group of systems, the focus is on reconciling the conclusions of RBR and CBR.
The reconciliation can be done either by a weak method — ie.. a general-purpase methad that
does not require knowledge of the domain — or a knowledge-based method. CELIA [Redmond.
1992] and Quinlan’s method [Quinlan, 1993} are two examples of using a weak method. CELIA is a
learning apprentice in the dornain of autonwobile repair. A central part of the systemn’s function as
a learning apprentice is to watch an expert mechanic and predict the expert’s next step. Prediction
is done: using two knowledge sources: abstract general knowledge. and cases. The abstract general
knowledge is that of 2 novice mechanic. and is thus assumed incomplete and buggy. The cases, in
contrasit, represent actual troubleshooting sequences by an expert, and are considered highly reliable.
To predict the expert’s next step, CELIA applies its buggy model, and, independently, looks for an
analogous case on whirh to base its prediction. H it is able to come up with a prediction based
on a case, it listens to it. else it falls back on the rule-based prediction This itlusirates a way of
integrating abstract general kniowledge and cases under the assumption of incomplete, buggy general
knowledge. It is a weak method because it does not use dornain knowledge to decide between rules
and cases, but rather simply prefers cascs whenever they are applicabie.

Quinlan’s method [Quinlan, 19937 applies to tasks whose answer is a numeriz quantity. It uses
an instance-based scheme to generate an initial answer: this step corresponds to CBR. The simplest
instance-based scherne is to retrieve the source case that is closest (by some metric) to the targel,
and just copy its answer. Quinlan’s method irnproves on this answer by using a model. M, Lo add
a correction term; this step corresponds to RBR. Let:

T = the targel problem

S = the source case retrieved by the instance-based scherne
A(S) = the answer given by the source case
M(T) = the answer obtained by applying the mode) Lo the target

M(S)y = the answer obtained by applying the mode) to the source

The pure instance-based scherne would give the answer A(S) But Quinlan's cornbimed method gives
A(S) + (M{T) ~ M(S)). 'The parenthesized corraction rerm helps account for differences: between
the source and target probiems ‘This answar is thus obtained numerically from the resulis of RBR
and CBR; no domain kuowledge is needed

Systerns that take 2 knewledge-based approach to combining the results of RBR and CBR in-
clude Anapron, MARS {Dutta and Bomssone 1999], and DANIEL (Bruninghavs, 1994) The main
distinchion among these systeins is in the type of knowledge they use to do the combination. MARS
combine evidence from multiple rules and cases using possilahistic reasoning  Tlhis cequires that
all of its knowledge Le represented as possibilistic roles: thus MARS s first steop i< ta convert ite




cases into this form. The conversion requires certain knowledge about. each case: the features of the
case that are relevant to its outcome, and the necessity and sufficiency with which this outcorne is
implied. This per-case knowledge enables MARS to represent cach case as a rule and subsequently
aggregate evidence from rules and cases via possibilistic reasoning. In MARS’s domain of mergers
and acquisitions, the per-case knowledge is acquired via natural-langnage processing of a document
that explains the judge’s ruling on each case.

DANIEL combines CBR and RBR for legal interpretation. IDANIEL explicitly addresses conflicts
between rules and cases by invoking a rule-bused coordination component. This component decides
between CBR and RBR using two sources: domain meta-knowledge -— in particular, the legal
binding force of the rule-based and case-hased arguments. and the denree of open-texturedaess of
the predicates involved — and the similarity between the source and target cases

In Anapron. decisions belweer, RBR and CBR are based on the compellingness of the analogy.
Compellingness depends on two faciors: the similarity between source and target, and an empirical
verification, which tests the generalization behind the analogy on other cases in the case Iibrary.

It can be seen that MARS. DANIEL. and Anapron each depend on different kinds of knowiedge ta
arbitrate between RBR and CBR. The systems are therefore applicable in different situations: when
it is practical to do the knowledge engineering of cases that MARS requires, MARS is appropriate.
When domain meta-knowledge is available for evaluating the strength of a case based or rule-based
argument, and when it is practical to specify a similarity metric, DANIEL is appropriate. When a
large supply of cascs i« available for testing out an analogy, and again when 2 similarity metric can
b= specified. Apapron is appropriate.

6 Conclusion

An architecture was presented for improving  sutem accuracy by bringing together knowledge in
two forms: rules and cases. The architecture 1 muw rdd for domains that zre understood well but
not perfectly. The idea is that in such domains, cxpert knowledge in the form of rules can be nsed
to provide a skeletal ruethod for solving problems; cases are they used to flesh out the method by
covering idiosyncrasies and special cases that were not anticipated by the rules. In addition 1o a
reasoriably accurate and efficient set of rules 1o serve as a starting point for problem solving, the
architecture also needs knowledge in support of CBR -~ namely, a set of cases and a similarity metric.
The set of casee should be extensive enough to illustrate the errors in the rules; any unillustrated
problems cannot be corrected.

Tle architecture was applied o the task of name pronunciation. With minimal knowledge
engineering, it was found to perform almost at the level of state-oi-the-art commercial systems.
More importantly. a madification experiment showed that it perforinance was higher than what it
could have achieved with its rules or cases alone. This deronstrates the capacity of the architecture
to improve upon a pure rule-hased or cass-based systers. Iy addition to the ac rurucy benefits. having
rules togethier with the cases allowed two innovations in CBR technolngy: first, the rules provided a
natural way to index the cases (prediction-bawed indexing). and second, they provided a method of
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doing case adaptation, termed “case adaptation by factoring”.

The architecture presented here is one datapoint in a hierarchy of possible hybrid approaches.
One way to abstract away from its design is to keep the same reasoning components (RBR and
CBR), but to combine them diflerently. The method of combination could be tatlored to whatever
kpowlsdge is available in the domain, whether analytic {e.g.. heuristics about when to believe RBR
versus CBR) or empirical {e.g., examples of previous decisions combining RBR and CBR). Another
way to abstract away from the architecture is to replace its RBR component with some other
reasoning mcthod. CBR then becomes a postprocessor to irnprove an approximate answer obtained
by any method of choice. The downside, however, is that the benefits of having rules together with
cascs would be lost — alternative methods of cate indexing and case adaptation would be needed.
A final level of abstraction, and the one that is in fact the essence of the wark presented here, is
simply to coinbine multiple independent knowledge ecurces to achieve higher accuracy.
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